ACBSE Coaching for Mathematics and Science

ARITHMETIC PROGRESSION

if we are given the first term a and the common difference d, we can completely identify the sequence as,

$$a, a + d, a + 2d, a + 3d,..., a + (n - 1)d,...$$

If the A.P. is finite and terminates at the *n*th step, then $T_n = a + (n-1)d$ is also called the last term.

An important result:

$$d=\frac{\mathrm{T}_m-\mathrm{T}_n}{m-n},\ m\neq n.$$

In fact
$$T_m - T_n = a + (m-1)d - (a + (n-1)d)$$

= $(m-n)d$

$$\therefore d = \frac{T_m - T_n}{m - n} \qquad (m - n \neq 0)$$

Q.1	Find the 101st term of A.P. 5, 11, 17,
	Solution : $a = 5$, $d = 6$
	$T_n = a + (n-1)d$
	$T_{101} = 5 + (101 - 1)6 = 5 + 600 = 605$
	The 101st term is 605.
Q,2	For a given A.P. 5, 10, 15, 20,, 200, what is the number of terms?
	Solution: Suppose 200, the last term is the <i>n</i> th term.
	$T_n = 200, \ a = 5, \ d = 5$
	$\therefore a + (n-1)d = 200$
	\therefore 5 + $(n-1)5 = 200$
	\therefore 1 + n - 1 = 40
	$\therefore n = 40$
	:. The number of terms is 40.
Q.3	Is 0 a term of A.P. 200, 196, 192,, -200 ? If yes, what is its order ? Solution: $a = 200$, $d = 196 - 200 = -4$ Let $T_n = 0$, if possible. $T_n = a + (n-1)d$
	"
0.4	$\therefore 200 - 4(n-1) = 0 \qquad \therefore \qquad n = 51 \qquad 50 - n + 1 = 0 \qquad \text{Yes, 51st term of the A.P. is zero.}$
Q.4	If in an A.P., 7th term is 108 and 11th term is 212, find its <i>n</i> th term.
	Solution: Here $T_7 = 108$, $T_{11} = 212$
	$\therefore a + 6d = 108 \text{ and } a + 10d = 212 $ (T _n = a + (n - 1)d)
	Subtraction of the equations gives $4d = 104$

BSE Coaching for Mathematics and

- d = 26
- \therefore a = 108 6d = 108 156 = -48
- $T_n = a + (n-1)d = -48 + 26(n-1)$
- $T_n = 26n 74$
- Here $d = \frac{T_{11} T_7}{11 7} = \frac{212 108}{4} = \frac{104}{4} = 26$
- Q.5 How many three digit multiples of 7 are there?
 - Solution: Multiples of 7 having 3 digits are 105, 112,..., 994.
 - \therefore $a = 105, d = 7, T_n = 994$
 - \therefore 994 = 105 + 7(n 1)
 - $\therefore \frac{889}{7} = n 1$
 - :. There are 128 three digit multiples of 7.
- Which is the first negative term of A.P. 112, 107, 102,...?
 - **Solution**: Let the *n*th term of the sequence be its first negative term.
 - $T_n < 0$
 - \therefore 112 + (n-1)(-5) < 0
 - \therefore 112 < 5(*n* 1)
 - $\therefore \quad n > \frac{112}{5} + 1$
 - $\therefore n > 23.4$
 - \therefore The smallest $n \in \mathbb{N}$ greater than 23.4 is 24.
 - : 24th term is the first negative term of A.P. 112, 107, 102,...
- Infact $T_{23} = 112 + (23 1)(-5) = 2$, Tips
- $T_{24} = 112 + (24 1)(-5) = -3$ Determine the A.P. whose 4th term is 17 and the 10th term exceeds the 7th term Q.6 by 12.
 - **Solution**: We know $d = \frac{T_m T_n}{m n}$
 - Here $T_{10} = T_7 + 12$. So $T_{10} T_7 = 12$
 - $\therefore d = \frac{T_{10} T_7}{10 7} = \frac{12}{3} = 4$
 - Now, $T_4 = a + 3d = 17$
 - \therefore a + 12 = 17
 - $\therefore a = 5$
 - :. The A.P. is 5, 9, 13, 17, 21, 25,... $T_n = 5 + 4(n-1) = 4n + 1$
- For which n, some terms of 231, 228, 225,... and 3, 6, 9,... are equal? Q.7
 - Solution: For the sequence 231, 228, 225,...

$$T_n = 231 + (n-1)(-3) = -3n + 234$$

- For the sequence 3, 6, 9,... $T_n' = 3n$
- We want $T_n = T_n'$: 3n = -3n + 234
- The 39th terms of both A.P. s are same, namely 117.